For the love of birds

fortheloveofbirds.JPG

From the glorious crested guinea fowl to the adulterous African jacana to vultures that can pick a zebra carcass clean in 30 minutes, Washington Wachira wants us all to get to know the marvelous species of birds that share the planet with us. If you’re not already a fan of earth’s feathermakers — or concerned about their conservation — you will be after you watch this delightful talk.

Advertisements

Mercury decline in seabirds due to diet, not emissions controls

Mercury decline in seabirds due to diet, not emissions controls
(Kyle Elliott, Mehrnoosh Azodi, 23 November 2017;Photo: CC BY)

For 47 years, biologists have plucked eggs from seabird nests along the British Columbia coast. Many of the eggs were collected from remote rocky islands surrounded by some of the world’s roughest seas.

In all, they collected 537 eggs from six species, including ancient murrelets, rhinoceros auklets and double-crested cormorants. Now these eggs are revealing new information about the way mercury finds its way into the ecosystem.

The eggs of top predators, like these seabirds, are important for researchers who study chemical pollutants. We use these eggs to understand, for example, how mercury levels in seabirds have changed over time. This data helps us understand whether control measures, including international agreements, are reducing mercury levels in the global environment.

Human activities, especially the burning of coal, release mercury into the atmosphere. Mercury levels in the Pacific Ocean are now three to five times higher than they were before the industrial revolution. Our activities have released 1.5 million tonnes of mercury into the air, land and water bodies since 1850.

For wildlife —and humans — mercury is a neurotoxin. High levels in the food chain can have negative impacts on the reproductive health of seabirds, marine mammals and other carnivores that feed on seafood. For example, seabirds with heavy mercury loads are less likely to breed. Mercury also slows down the healthy growth of chicks.

Bacteria plays a fundamental role

Researchers had thought that the seabirds that feed on large predatory fish would have the highest levels of mercury because large fish, which are higher up the food chain, accumulate more mercury in their bodies than the small fish and invertebrates that occupy the bottom of the food chain.

But later studies contradicted these expectations. By studying mercury levels in the eggs of seabirds over many years, researchers found seabirds that fed on invertebrates and small fish had higher mercury levels than the seabirds that ate large fish.

Our research explained why the highest mercury levels occurred in species that ate small fish. We measured mercury levels and a collection of dietary tracers called stable isotopes in the seabird eggs. We studied nitrogen, carbon and sulphur isotopes because these chemicals tell us about the type of food the birds were eating.

We found that the seabird eggs with high mercury levels also had higher sulphate levels. It meant that these birds were eating small fish from areas that were also favoured by a specific type of bacteria.

These bacteria, called sulphate-reducing bacteria, convert mercury to methylmercury, the toxic form of mercury that can move up the food web and harm seabirds. These bacteria tend to be found in deep-water sediments.

Stable mercury levels

The study also showed that mercury concentrations in Pacific seabird eggs have been relatively stable over the past 50 years. This is surprising, given the dramatic changes in mercury concentrations in Pacific waters.

A decline in surface-dwelling fish stocks in the Pacific Ocean has forced some seabirds to feed elsewhere where there are fewer sulphate-reducing bacteria. By changing their diet, these seabirds end up with lower mercury levels.

Monitoring programs have suggested that environmental levels of mercury are in decline, but this research suggests otherwise. Based on our results, we believe monitoring programs need to consider the structure of the food web, including where these birds are foraging.

Human health threat

Although this research focuses on the eggs of seabirds, it has implications for human health. The World Health Organisation has identified mercury as one of the top ten chemicals of major health concern.

Mercury pollution is a global issue since elemental mercury travels over long distance and methylmercury accumulates in the food chain, posing a serious risk to both humans and wildlife who feed on seafood.

The global scale of this issue was the key driving force for a global environmental treaty called the Minamata Convention, which enforces reductions on mercury emissions. The agreement entered into force on Aug. 16, 2017, making it the most recent international law that aims to protect humans and the environment from the threat of toxic mercury.

The current study on avian predators, which feed on marine food webs similar to those we feed on ourselves, illustrates how important it is to consider those food webs when considering the risk of mercury.

Rather than simply considering larger species high in the food chain as being riskiest, we suggest that governments also consider the role of bacteria and reduce the consumption of those fish feeding in food webs with high levels of sulphate-reducing bacteria.

Songbirds work around computational complexity by learning song vocabulary independently of sequence

song.JPG

(Dina Lipkind, Anja T. Zai, Alexander Hanuschkin, Gary F. Marcus, Ofer Tchernichovski & Richard H. Hahnloser 1 Nov 2017)

 

Songbirds, being skilled vocal learners18,19,20,21, provide an opportunity for studying how errors are assigned and minimized during the learning of complex motor sequences. A young zebra finch (Taeniopygia guttata) imitating an adult tutor has to match a series of spectrally distinct sounds (syllables) performed in a precise order (Fig. 1b). Zebra finches are capable of adjusting their developing song towards its target in a variety of ways, including morphing the spectral (phonological) structure of song syllables22,23,24,25, generating and adding novel syllables to their song23, 25, 26, and rearranging the positions of existing syllables26, 27. How then do they cope with the complexity of selecting the appropriate combination of operations that would reduce the mismatch between their own song and the target?

A possible way to reduce computational complexity could be to optimize one aspect of the task, while ignoring the costs of the other. At one extreme, the task could be reduced to assigning each syllable in the bird’s song to the temporally corresponding syllable in the target song (Fig. 1c, left). Such strategy would minimize sequence rearrangements, at the cost of possibly large phonological adjustments. Although this hypothesis has not been directly tested, a number of previous findings suggest that songbirds may not be using global alignment between song and target as a learning strategy. These include the observation that individual syllables are recognizable in developing zebra finch song before the correct sequence is apparent28; the existence of an early developmental phase in which repetitions of a single “proto-syllable” differentiate towards multiple targets22, 24, 25, 29, 30; the fact that many songbird species perform variable syllable sequences as adults (e.g., nightingales, starlings and Bengalese finches); and the ability of zebra finches to match a target exclusively through syllable rearrangements, without changing phonology26. An alternative strategy, therefore, could be to assign song syllables to target syllables in a manner that minimizes phonological distances, while ignoring combinatorial distances (Fig. 1c, middle). Such phonological greediness would increase the number of ensuing sequence changes and thus the overall sequencing cost26. An intermediate strategy could be to seek a trade-off between minimizing structural and temporal errors, for example by independently matching parts of the song sequence (such as phonology in bigrams or trigrams27) to parts of the target sequence

Read more

Dramatisk försämring för stenskvättor – verkar inte hitta tillräckligt med insekter

Stenskvätta.JPG

(Erik Hansson, Natursidan 2017-11-10)

I jordbrukslandskapet utanför Uppsala har forskare följt stenskvättor i 25 år och de ser en dramatisk försämring. Troligen orsakad av att fåglarna inte hittar lika mycket insekter och andra småkryp som föda, enligt en ny studie från SLU som publicerats i tidskriften Ecology and Evolution.

De senaste 25 åren har exempelvis stenskvättans ungars vikt minskat med i snitt 2 gram från 19,5 gram till 17,5 gram. Dessutom överlever färre ungar (från i snitt en unge per bo till en unge i var femte bo) och antalet häckande par har minskat. Anledningen verkar inte vara att stenskvättan har problem med att anpassa sig till de allt tidigare vårarna (i snitt elva dagar tidigare nu jämfört med i början av 90-talet). Troligtvis är orsaken matbrist, menar SLU-forskarna som gjort en av få långsiktiga internationella studier av fåglar i jordbrukslandskapet.

– Det är en dramatisk förändring. Ungens vikt har stor betydelse för dess chans att överleva. När den hoppar ut ur boet behöver den reserver. Om ungen är hungrig och sitter och skriker blir den uppäten på en gång, säger Tomas Pärt, professor på institutionen för ekologi.

Forskarna fann inget samband mellan hur stenskvättornas förmåga att häcka i takt med när våren anländer och hur väl de lyckades med häckningen. De är glädjande nog ganska bra på att anpassa sig efter ett nytt, varmare klimat.

– Vår misstanke om att de negativa trenderna berodde på att stenskvättorna inte längre lyckades pricka in bästa tiden för att häcka blev alltså inte bekräftad. Våra resultat visar hur viktigt det är att inte dra slutsatsen att två trender som följer varandra hör ihop – alltså tidigare vår och försämrad fortplantning och överlevnad i det här fallet, säger Debora Arlt, forskare på institutionen för ekologi.

De låga vikterna på ungarna och andra tecken tyder på att de sämre häckningsframgångarna hänger ihop med tillgången på mat, som till stor del består av insekter och andra kryp. Kan det finnas ett samband med det som kallats en ”ekologisk katastrof” – studierna i Tyskland om att mängden insekter har minskat med över 75% på 27 år? Det finns ingen långsiktig data för liknande fenomen i Sverige.

– Miljön kan ha försämrats för både insekter och stenskvättor. Om vi visste vad det berodde på kanske vi också skulle kunna förklara varför många andra jordbruksfåglar minskar. Det ligger ju i allas intresse att hitta sätt att långsiktigt bruka landskapet så att det gynnar både biologisk mångfald och produktion, säger Debora Arlt.

Samtidigt vill forskarna inte skylla på jordbruket.

– Det är lätt att skälla på lantbrukarna men jordbruket påverkar den biologiska mångfalden positivt också. Utan dem skulle det överhuvudtaget inte finnas förutsättningar för stenskvättorna och andra arter som är knutna till det öppna jordbrukslandskapet, säger Tomas Pärt.

Läs hela artikeln här

A warbler’s flashy yellow throat? There are genes for that

warbler2.JPG

(University of British Columbia. 8 Oct 2017; Photo Alan Brelsford)

Birds get their bright red, orange and yellow plumage from carotenoid pigments—responsible for many of the same bright colours in plants. But how songbirds turn carotenoids into the spectacular variety of feathered patches found in nature has remained a mystery.

Now University of British Columbia (UBC) research might have pinpointed some of the genetic machinery responsible for the plumage colouration in Audubon’s and myrtle warblers, related but distinctly feathered North American songbirds.

“Audubon’s and myrtle warblers interbreed in a narrow band across British Columbia and Alberta,” says David Toews, co-author of a new Proceedings of the Royal Society paper exploring the birds’ colouration.

“Those hybrid warblers, while considered oddities to some birders, were key for this study because their plumage traits and genes are all jumbled and mixed, allowing us to link their differing colours to genetic markers and hopefully the genes responsible.”

Both types of warblers use colourful carotenoid pigments to make several yellow feather patches, including their yellow-rumps—the birds are colloquially referred to as ‘butter butts’.

But only Audubon’s also used carotenoids in their telltale yellow throats. Myrtles have white throats and the hybrids have a mix of white and yellow.

The study identified several genomic region s— one including a member of the scavenger receptor gene family that affects carotenoids in other animals—that might be involved in this selective distribution of yellow carotenoid colours.

“We found strong associations with several genomic regions across a handful of distinct plumage traits” explains co-author Alan Brelsford. “Now we can now dig even deeper into these regions to understand the mechanisms that make warblers so colourful and diverse.”

“This study is unusual in that it focused on variation in multiple colour patterning traits,” says co-author Darren Irwin, a professor of zoology at UBC. “Two of the plumage differences between the species, eye spot and eye line colouration, appear to be encoded by a single region in the genome.”

How Wildfires Affect Birds

(By Andy McGlashen, 11 Oct 2017; Photo:Robert Royse)

Big burns are natural, but climate change could make especially destructive fire seasons the new normal.

Devastating and deadly wildfires in California’s wine country this week made it clear that this summer’s brutal fire season in the West isn’t over yet. Nationwide, 38 fires are still burning, 17 of them large and uncontained, according to a daily report from the National Interagency Fire Center. Fires have scorched more than 8.5 million acres in 2017 so far, compared to a 10-year average of about 6 million acres. Multiple firefighters and citizens have died in blazes this season, and thousands of homes and businesses have been destroyed. Smoke has made the air dangerous to breathe in many parts of the West.

Like melting glaciers and rising seas, larger fires and longer fire seasons are among the predicted effects of climate change that are now coming to pass. With that in mind, it’s worth exploring how wildfires affect birds. It’s hard to definitively say how avian communities will be affected in the long term, but generally speaking—for now, anyway—wildfires don’t pose a major threat for most birds.

What do birds do when wildfires break out? No surprise here: They fly away. A fire might kill weak birds or, depending on the time of year, claim nestlings. But at least in the Western forests that U.S. Forest Service research biologist Vicki Saab studies, birds evolved alongside fire and flee in the face of conflagrations. “Direct mortality is not a big concern,” Saab says.

How do wildfires physically affect birds? Assuming birds escape a fire, smoke might still affect their health in ways that aren’t very well understood. “We do know that exposure to particulate matter, which of course is of great concern for human health, can affect birds as well,” says Olivia Sanderfoot, a National Science Foundation Graduate Research Fellow at the University of Washington Seattle who studies how air pollution affects birds. For example, veterinarians and poultry scientists who study captive birds have found that smoke can damage lung tissue and leave the animals susceptible to potentially lethal respiratory infections.

How that plays out in the wild is largely unknown, Sanderfoot says. Her current research aims to track changes in bird populations and diversity after exposure to smoke from large wildfires. In some cases, smoke inhalation might make it harder for birds to flee onrushing flames. Thick smoke, for instance, may have contributed to the deaths of 50 adult White Ibises during a 1999 fire in the Everglades, Sanderfoot reported in a recent paper. And some low-flying species might succumb to smoke inhalation or exhaustion before they can escape forest fires, according to the Alberta Institute for Wildlife Conservation.

How do wildfires affect habitat, and do any birds benefit from blazes? A little disturbance is a good thing for many species. In the dry, mixed-conifer forests Saab studies, most wildfires—even intense ones—burn unevenly, leaving behind a mosaic of habitat patches. “Fire definitely benefits a lot of bird species,” Saab says. “It’s not all doom and gloom.”

For a Black-backed Woodpecker, for example, a newly burned forest provides a smorgasbord. Bark- and wood-boring beetles arrive in droves and lay eggs in charred trees; woodpeckers feast when they reach the larval stage. There’s often an influx of other bugs, too, which draws aerial insectivores like Dusky Flycatchers and Mountain Bluebirds that hunt for midair meals in the new forest openings created by fire, Saab says. The patchwork of post-fire habitats also suits White-headed Woodpeckers and other species that nest in open areas but forage in unburned surrounding forests.

Other birds benefit from fires over the longer term. Kirtland’s Warbler, for instance, nests only in the fire-dependent jack pine forests of Michigan, Wisconsin, and Ontario. Jack pine cones are sealed tight with resin until fire opens them up, releasing the seeds and generating new warbler habitat. Red-headed Woodpeckers, which nest in the high limbs of dead trees, can see a local population boom after a fire devastates a patch of forest.

Blazes aren’t a boon for all avian species. Wildfire forces those that dwell in old-growth forests—including Pileated Woodpeckers, Townsend’s Warblers, and Golden-crowned Kinglets—to go in search of new places to nest and forage. It also poses a serious risk to a bird that faces plenty of other threats: the Greater Sage-Grouse. Fire in the sagebrush ecosystem—upon which this iconic species depends—often gives invasive plants such as cheatgrass and juniper a leg up on slower-growing sage, and they provide fuel for future fires.

Do birds ever start wildfires? When combined with electricity, yes. We’ve all seen birds perched harmlessly on power lines. But if they manage to touch two transmission lines at once, they form a circuit and get zapped. In two recent fires started by birds, hawks were carrying snakes. Chances are, those writhing meals-to-be touched the second power line, electrocuting dinner and diner both, and sparking the blaze below.

There are credible claims that birds intentionally spread fires, too. Audubon and other publications have covered anecdotal reports of northern Australia raptors picking up burning sticks and dropping them elsewhere on the arid landscape to flush out prey like lizards and snakes. Mark Bonta, the Penn State geographer behind those reports, says that he and colleagues have a forthcoming peer-reviewed paper with further evidence that Black Kites, Brown Falcons, and Whistling Kites all spread fires intentionally. The researchers haven’t yet captured video or photographic evidence of the phenomenon, but Bonta says they’ve confirmed it by interviewing local experts and reviewing publications of aboriginal knowledge.

How big of a role does climate change play? Researchers detect a changing climate’s fingerprints on this year’s ferocious fires, which may be just a glimpse of things to come. In northern California, for example, heavy winter rains fueled a riot of new plant growth in the spring, but the summer’s record heat parched that vegetation, turning it to tinder. That’s part of a broader trend; Columbia University scientists last year showed that climate change has doubled the area of the western U.S. affected by forest fires over the past three decades. “Climate is really running the show in terms of what burns,” one of that study’s authors said. “We should be getting ready for bigger fire years than those familiar to previous generations.”

What climate-charged fires will mean for birds is hard to say. “More and more, the past is becoming irrelevant as we advance to the no-analog future climate,” one researcher told Audubon in 2015. Saab, from the Forest Service, says she expects future fires to rearrange habitat types and the distribution of bird species. For now, the patchwork of habitat left behind by blazes helps maintain bird diversity in Western forests. “In the future?” she says, “I don’t know.”

Cover crops provide bed and breakfast layover for migrating birds

(University of Illinois, 30 Oct 2017;Photo Cassandra Wilcoxen)

After harvesting a corn or soybean crop, farmers may plant a cover crop for a variety of reasons — to reduce soil erosion and nutrient runoff, increase organic matter in the soil, and improve water quality. Now there’s another reason. University of Illinois research shows that migratory birds prefer to rest and refuel in fields with cover crops.

“Here in the Midwest, we’re in one of the major flyway zones for migratory birds, where there once was plenty of habitat for grassland birds to safely forage and rest during their migration. Now that agriculture is the dominant landscape, they’re finding it harder to get the resources they need on the way to their breeding grounds,” says Cassandra Wilcoxen, a graduate research assistant in the Department of Natural Resources and Environmental Sciences in the College of Agricultural, Consumer and Environmental Sciences at U of I.

“We think cover crops, such as cereal rye, likely provide migrating birds with more vegetation and a safe area to escape from the elements and from predators,” Wilcoxen says. “Cover crops also increase insect abundance, another food source for birds. The increased number of insects allows migrants to fuel up faster and move on to their breeding grounds.

“Grassland birds prefer large, open areas: the bigger, the better. Agricultural fields are huge, so the cover crops provide a large habitat where birds can rest, forage, and potentially even nest.”

Fields with cover crops are not going to replace natural habitats, but in early spring there can be miles of fields with little vegetation. The advent of cover crops provides a potentially important habitat for birds returning to the Midwest from areas as far south as Argentina. The large green fields are likely a beacon for migratory birds.

Over two planting seasons, Wilcoxen monitored birds in corn and soybean fields with and without cover crops. She observed 6,133 individual birds of 52 species, with 13 species accounting for 90 percent of all birds detected. The most common species were the red-winged blackbird, common grackle, and American robin.

“Fields with cover crops always had more birds, and corn fields with a cover crop were the overall winners,” Wilcoxen says. She thinks corn plus a cover crop, especially cereal rye, was the favorite because there is more residue on the fields; the remaining corn stalks along with rye provide more cover for the birds.

What’s the downside? Wilcoxen says it’s all in the timing.

“The window of time to plant a cover crop in the fall is fairly short. Cover crops can be aerial seeded, drilled, or broadcast. But depending on how wet the fall is, there is only a short time when it can be planted. Drilling is the best method because you know you’re getting good seed-to-soil contact,” she says.

Another timing issue emerges in the spring: when to kill the cover crop.

Wilcoxen says it’s tricky. “Some grassland birds nest in the spring, so in order to give birds the time they need, farmers may need to hold off terminating their cover crop. Those are the sorts of recommendations that will require more research,” she says. “It’s true of any new farming practice. You have to play around with it to get it right.”

“In our experience, most farmers using cover crops have learned about the practice from their neighbors, and we are hoping this continues and cover crop use continues to grow,” Wilcoxen says.

Will what’s best for migratory birds motivate farmers to plant cover crops and terminate them a bit later to allow birds to use them for habitat? Wilcoxen is hopeful. She says one of the aspects of her work that she enjoys most is bringing together the agricultural community and the wildlife community to work together for long-term environmental health.

“Production agriculture has taken a lot of habitat from wildlife, but we need it to provide food for us and the world. But how do we mesh the two? Where are the opportunities? No-till is a great example. It helps slow soil erosion and it helps birds. Now cover crops are another overlapping win-win opportunity to benefit both agriculture and wildlife.”