Tag Archives: behavioural ecology

Angry birds: Size of jackdaw mobs depends on who calls warning

(Physorg; University of Exeter; 10 May; Photo: Alex Thornton)

Jackdaws recognise each other’s voices and respond in greater numbers to warnings from familiar birds than strangers, new research shows.

The birds produce a harsh “scolding call” when they spot a predator, calling fellow jackdaws to mob the intruder and drive it away.

University of Exeter researchers have discovered that each bird has a unique call, and the size of the mob depends on which bird calls the warning.

The scientists played recordings of individual calls and found that the largest mobs assembled when birds heard the cry of a member of their own colony.

“Joining a mobbing event can be dangerous, as it involves approaching a predator, so it makes sense for individuals to be selective in whom they join. Our results show that jackdaws use the ability to discriminate between each other’s voices when deciding whether to join in potentially risky collective activities,” said Dr Alex Thornton, of the Centre for Ecology and Conservation on the University of Exeter’s Penryn Campus in Cornwall.

“We also found a positive feedback loop – if birds joining a mob made alarm calls of their own, this in turn caused more birds to join in, magnifying the size of the mob.”

The researchers studied wild jackdaws, a highly social member of the crow family, as part of the Cornish Jackdaw Project, a long-term study of jackdaw behaviour and cognition in sites across Cornwall.

In playbacks at nest-box colonies during the breeding season, they broadcast the warning calls of a resident from each nest-box, another member of the same colony, a member of a different colony, and a rook (a species that often associates with jackdaws).

Jackdaws were most likely to respond to a warning from a bird from the resident nest-box owner, followed in turn by other colony members, non-colony members and rooks.

Responses were also influenced by caller sex, with jackdaws less likely to echo a warning if the caller was a female stranger from a different colony.

The paper, published in the journal Scientific Reports, is entitled: “Caller characteristics influence recruitment to collective anti-predator events in jackdaws.”

 

 

Advertisements

Social interactions override genetics when birds learn new songs

(Nicholas Weiler, 26 Dec 2017)

New UC San Francisco research finds that although young male songbirds are genetically predisposed to sound like their fathers, enriched early experience with a foster-father can overcome this genetic destiny. This finding has striking implications for our thinking about how experience influences the genetics of complex human traits like learning ability or even psychiatric disease, the authors say.

Neuroscientists like UCSF’s Michael Brainard, Ph.D., have long studied songbirds like the Bengalese finch (Lonchura striata domestica) as a model of how complex behaviors like human language are shaped by early experience. Like human language, a male finch’s unique mating song is learned early in life by listening to and mimicking adult “tutors.” In nature, this is usually the bird’s father, but young birds raised by unrelated adults in the lab will learn to sing their foster-father’s song instead.

Now Brainard’s lab has shown that not all early experiences are equal in their influence over impressionable young birds: exposed only to a computerized “synthetic tutor,” young birds will revert to singing like a biological father they’ve never known or heard. The research—published the week of December 25, 2017 in PNAS—suggests that finch song has a stronger genetic component than had previously been realized, but also that this genetic drive can be suppressed by the right kind of early life experience.

“What we saw is that the genetic contribution to a bird’s song depends on the specifics of that bird’s experience. This is a striking demonstration that heritability for complex behaviors like birdsong is not fixed, as is often assumed, but instead can vary dramatically depending on the experience of an individual,” said Brainard, a professor of physiology and of psychiatry at UCSF, Howard Hughes Medical Institute investigator, and member of the UCSF Weill Institute for Neurosciences.

As noted, researchers have long considered the structure of adult birdsong to be dominated by the influence of whatever song a bird hears as a chick. However, David Mets, Ph.D., a postdoctoral scholar in the Brainard lab and the new paper’s first author, noticed a surprising amount of variation between the songs of individual Bengalese finches in the lab, even when all birds were exposed to the same experimentally controlled tutor song early in life.

To determine whether these differences might be caused by a previously overlooked genetic contribution to the birds’ song, Mets developed a careful set of experiments to control the contribution of genetics and experience. He removed eggs from their nests shortly after they were laid to ensure chicks never heard their fathers’ song, even in the egg. He then exposed the hatchlings only to carefully controlled computer-generated songs, which he varied in tempo in an attempt to influence the tempo of the song the young birds would learn.

To the researchers’ surprise, they found that these birds largely ignored the tempo of the synthetic songs, and developed adult songs with tempos much closer to their fathers’ songs—which they had never heard. The researchers quantified this observation, showing that 55 percent of variability in the experimental birds’ songs could be explained by differences in their fathers’ songs, but only 21 percent was driven by differences in the synthetic song they heard as chicks.

In a second set of experiments, Mets got rid of the synthetic tutor and instead exposed finch chicks—which also had never heard their fathers’ songs—to unrelated live adult males. The researchers were again surprised to discover a complete reversal of the results seen with synthetic tutoring: the live tutor’s song contributed 53 percent to the tempo of the young birds’ adult songs, with differences in their fathers’ songs contributing only 16 percent.

“This was really exciting because it showed that the experience provided by a live tutor can actually reduce the contribution of genetics to complex behavior like birdsong,” Mets said. “We knew before that live tutors helped birds learn better and faster, but we were surprised to find that this experience can actually override the bird’s genetics.”

“We’ve gotten used to the idea that complex traits and behaviors can have a big genetic component,” Brainard added, citing human studies of identical twins separated at birth who nonetheless share surprising similarities in things like their sense of humor, fashion sense, and so on. “But those stories tend to assume that the genetic component is fixed—academic achievement is either 20 percent genetic or 80 percent genetic. We’re showing here that the contribution of genetics is anything but fixed—in the case of academic achievement, the school you go to may well overcome any contribution of genetics.”

The findings raise the possibility that human genetic studies that fail to account for differences in individuals’ experience could be producing misleading conclusions about the genetic contributions to complex behaviors, Brainard said.

The researchers now hope to use the Bengalese finch as a model to explore how genetics and experience interact in the brain to influence complex behaviors like birdsong. “Where in the brain are the father’s genes and early life experience competing for control over song tempo?” Mets asked. “That’s the next really exciting question.”

The results also suggest a broader opportunity to understand the specific features of enriched early experiences that allows them to override genetic predispositions, Brainard said: “This is far into the future, of course, but it highlights the potential of early behavioral intervention to help mitigate negative genetic traits, such as a predisposition to psychiatric disease.”

Birds learn from each other’s ‘disgust,’ enabling insects to evolve bright colors

(University of Cambridge 18 Dev 2017)

Many animals have evolved to stand out. Bright colours are easy to spot, but they warn predators off by signalling toxicity or foul taste.

Yet if every individual predator has to eat colourful prey to learn this unappetising lesson, it’s a puzzle how conspicuous colours had the chance to evolve as a defensive strategy.

Now, a new study using the great tit species as a “model predator” has shown that if one bird observes another being repulsed by a new type of prey, then both birds learn the lesson to stay away.

By filming a great tit having a terrible dining experience with conspicuous prey, then showing it on a television to other tits before tracking their meal selection, researchers found that birds acquired a better idea of which prey to avoid: those that stand out.

The team behind the study, published in the journal Nature Ecology & Evolution, say the ability of great tits to learn bad food choices through observing others is an example of “social transmission.”

The scientists scaled up data from their experiments through mathematical modelling to reveal a tipping point: where social transmission has occurred sufficiently in a predator species for its potential prey to stand a better chance with bright colours over camouflage.

“Our study demonstrates that the social behaviour of predators needs to be considered to understand the evolution of their prey,” said lead author Dr Rose Thorogood, from the University of Cambridge’s Department of Zoology.

“Without social transmission taking place in predator species such as great tits, it becomes extremely difficult for conspicuously coloured prey to outlast and outcompete alternative prey, even if they are distasteful or toxic.

“There is mounting evidence that learning by observing others occurs throughout the animal kingdom. Species ranging from fruit flies to trout can learn about food using social transmission.

“We suspect our findings apply over a wide range of predators and prey. Social information may have evolutionary consequences right across ecological communities.”

Thorogood (also based at the Helsinki Institute of Life Science) and colleagues from the University of Jyväskylä and University of Zurich captured wild great tits in the Finnish winter. At Konnevesi Research Station, they trained the birds to open white paper packages with pieces of almond inside as artificial prey.

The birds were given access to aviaries covered in white paper dotted with small black crosses. These crosses were also marked on some of the paper packages: the camouflaged prey.

One bird was filmed unwrapping a package stamped with a square instead of a cross: the conspicuous prey. As such, its contents were unpalatable — an almond soaked with bitter-tasting fluid.

The bird’s reaction was played on a TV in front of some great tits but not others (a control group). When foraging in the cross-covered aviaries containing both cross and square packages, the birds exposed to the video were quicker to select their first item, and 32% less likely to choose the ‘conspicuous’ square prey.

“Just as we might learn to avoid certain foods by seeing a facial expression of disgust, observing another individual headshake and wipe its beak encouraged the great tits to avoid that type of prey,” said Thorogood.

“By modelling the social spread of information from our experimental data, we worked out that predator avoidance of more vividly conspicuous species would become enough for them to survive, spread, and evolve.”

Great tits — a close relation of North America’s chickadee — make a good study species as they are “generalist insectivores” that forage in flocks, and are known to spread other forms of information through observation.

Famously, species of tit learned how to pierce milk bottle lids and siphon the cream during the middle of last century — a phenomenon that spread rapidly through flocks across the UK.

Something great tits don’t eat, however, is a seven-spotted ladybird. “One of the most common ladybird species is bright red, and goes untouched by great tits. Other insects that are camouflaged, such as the brown larch ladybird or green winter moth caterpillar, are fed on by great tits and their young,” said Thorogood.

“The seven-spotted ladybird is so easy to see that if every predator had to eat one before they discovered its foul taste, it would have struggled to survive and reproduce.

“We think it may be the social information of their unpalatable nature spreading through predator species such as great tits that makes the paradox of conspicuous insects such as seven-spotted ladybirds possible.”

Video: https://www.youtube.com/watch?v=87l0Dyte_nQ

Rooftop wiretap aims to learn what crows gossip about at dusk

(University of Washington 5 Dec 2017)

What are crows saying when their loud cawing fills a dark winter’s evening? Despite the inescapable ruckus, nobody knows for sure. Birds congregate daily before and after sleep, and they make some noise, but what might be happening in those brains is a mystery.

Curious about these raucous exchanges, researchers at the University of Washington Bothell are listening in. They are placing equipment on the roof of their building — a meeting place for some of the thousands of crows that sleep in nearby campus trees — and using a sort of computerized eavesdropping to study the relationship between calls and the birds’ behavior.

“With audio alone, our team is able to localize and record the birds remotely, and in dim light that makes this situation less suitable for video tracking,” said Shima Abadi, an assistant professor at UW Bothell’s School of Science, Technology, Engineering & Mathematics. “It’s still a challenging task, but we can use the audio signals to look for patterns and learn more about what the birds may be communicating.”

Abadi’s background is in ocean acoustics; some of her previous research tracks whales using underwater microphones in the ocean water. For this project she teamed up with a colleague in biology who studies the local crow population with his undergraduate students.

“They’re incredibly raucous, and make this cacophony every night, and people wonder: What are they saying? And that’s a great question to ask on this campus,” said Douglas Wacker, an assistant professor of biology at UW Bothell.

Wacker earned his UW doctorate studying song sparrows. After joining UW Bothell in 2012, it was only natural that he study the roughly 15,000 crows that migrate to the North Creek Wetlands on campus each evening in fall, winter and spring.

People walking through campus can’t fail to hear the not-always-melodious sound of the birds.

“Crows make a variety of different calls, some of which we understand the functions of fairly well, and others not as well,” Wacker said. “Their normal ‘caw’ calls are not necessarily well understood — we don’t know what information they might be conveying.”

He and Abadi have nearby offices. They decided last year to collaborate on an interdisciplinary project that blends his biology background with her acoustics expertise.

While the field site on the roof of the faculty members’ building is convenient, this project poses technical challenges. These crows call in a noisy environment, where it is tricky to separate their vocalizations from different birds and other surrounding sounds. What’s more, crows are intelligent. They will change their behavior if they think humans are watching, or even if unfamiliar equipment is nearby.

That’s why the high-tech approach, worthy of an avian CSI, is needed.

The team of mostly undergraduate students has been perfecting its audio recording technique. They placed four audio recorders in a 10-foot square in a parking lot, and then placed a speaker playing a crow call in one of the quadrants. The recorders have precise time stamps to calculate when the sound waves arrive, and then software compares the times to pinpoint where the sound was generated.

The students figured out a way to focus on the highest-quality audio to triple the accuracy of the source locations. They can now use the recordings to locate the source of the call to within 6-12 inches, or about the size of a bird.

About 50 to 100 crows might assemble in the pre-roost gathering at dusk on the roof of the science building. Their incessant cawing during flight quietens to just the occasional outburst while on the roof. With Abadi’s help, the team is working to develop a user interface and computer techniques that pick out particular calls, so they do not have to manually pick through hours of cawing but can focus on the most interesting events.

Derek Flett, a senior undergraduate student in mechanical engineering, will describe the team’s efforts Dec. 5 at the Acoustical Society of America’s annual meeting in New Orleans.

This winter they plan to use the equipment in the wild — that is, on the roof — to monitor real groups of crows. Eventually they hope to combine the audio surveillance with video, so they could study how birds might react to particular sounds.

They have also begun to test their theories by playing particular calls and then seeing whether the crows react in the predicted manner.

The idea that the calls contain meaning is plausible, Wacker said. The number of caws, or the length of the pauses between caws, could say something about food sources or possible dangers.

“If a bee can do a dance to tell other bees where food is located, then certainly a highly intelligent bird — in a family with other bird species that are capable of insight learning, recognizing themselves in a mirror, recognizing faces and passing that information on to subsequent generations — could be capable of communicating complex information,” Wacker said.

The other co-author on the work being presented in December is Virdie Guy, an undergraduate in mechanical engineering. The research was funded by a UW Royalty Research Fund.

New paper explores why Peru’s parrots eat clay

New paper explores why Peru’s parrots eat clay
(Jenna Marshall 4 August 2017; Photo Donald Brightsmith)

For more than 16 years, researchers and volunteers have been observing wildlife along the clay cliffs of Southeastern Peru’s Tambopata River. They’ve gathered data every day, logging more than 20,000 hours and building one of the most extensive datasets on tropical parrots in the world.

In a new paper published in Ibis, Elizabeth Hobson, a postdoctoral fellow with the Arizona State University-Santa Fe Institute Center for Biosocial Complex Systems, and Donald J. Brightsmith, a professor in the Texas A&M University College of Veterinary Medicine & Biomedical Sciences (CVM) and director of the Tambopata Macaw Project, begin to analyze the data from this long-term study.

In particular, the team explores the potential drivers behind geophagy—or intentional soil consumption—they’ve regularly observed in 14 different parrot species there.

This region of the Tambopata River in Southeast Peru is an ideal spot to study the nearly two-dozen parrot species that live nearby in the Amazon rainforest. In the thick foliage of the jungle, the birds are difficult to see, but when they emerge to gather up beakfuls of the sodium-rich clay soil, “it’s a crazy, screaming kaleidoscope of color,” Hobson said.

“They’re all quiet when they take flight, but in a few seconds, they all begin to scream, and some drop bits of the clay from their mouths,” said Brightsmith, who has led the Tambopata Macaw Project since 1999. “It’s an incredible experience.”

But geophagy is a somewhat confounding behavior—clay soil is basically inert.

“It doesn’t have proteins, carbohydrates, or really anything that you’d need,” Brightsmith said. “If we can understand why it’s so important to these parrots, we can learn more about the ecosystem and how it affects the other insects, birds, and mammals who also eat this soil.”

Geophagy occurs around the world and in many types of animals, and scientists have proposed many explanations for the behavior. In their paper, Hobson and Brightsmith explore the two leading theories for these Amazonian parrots—that clay soils help protect the birds from food toxins when ideal food sources are scarce and that clay soils provide necessary minerals not available in the parrots’ regular diet.

Like previous studies, their analysis suggests that toxin-protection is not a driver. But parrot geophagy there is highly correlated with breeding season, suggesting the increased nutritional demands are likely behind the soil consumption. This study also joins a large body of research suggesting that hunger for sodium, specifically, is that driver.

“There’s lots of evidence that’s pointing in that direction,” Hobson said. “Sodium in the rainforest is really rare, and the place on these clay licks most preferred by the birds also has the highest sodium content.”

Understanding how nutritional needs are—and are not—being met during breeding season becomes even more important in light of climate change, according to Brightsmith. Some of the larger macaws are already breeding right before a seasonal crash in the food supply, requiring parents take their fledgling young on long flights to find food.

“If climate change starts messing with the macaw’s food supply, it could disrupt their ability to breed,” he said.

Clever crows can plan for the future like humans do

Clever crows can plan for the future like humans do

(Markus Boeckle And Professor Nicky Clayton 14 July 2017)

This contrasts with all of the previous studies in future planning, which have focused on naturally occurring behaviour. For example, we know that California scrub jays cache their food according to their future needs. And that bonobos, chimpanzees and orangutans select, transport and save appropriate tools for future needs.

General intelligence

These studies have shown that animals can plan for the future – but they left an important question open for debate. Are animals only able to plan to use abilities that have evolved to give them a specific advantage, or can they flexibly and intelligently apply planning behaviour across various actions? Most critics would say the former, as the animals were tested in naturally occurring behaviours.

But the new research provides the first compelling evidence that animal species can plan for the future using behaviour that doesn’t typically occur in nature. This supports the view that at least some cognitive abilities in animals don’t evolve just in response to specific problems. Instead, it suggests that animals can apply these behaviours flexibly across problems in a similar way to humans.

It seems that, in corvids and apes, intelligence is not a system to solve a predefined set of problems (dedicated intelligence) but rather a computational system to improvise new solutions (improvisational intelligence). But it is still unclear what this cognitive system exactly is and how it evolved.

What’s needed now is neuro-biological evidence of general intelligence in animals. We also need to investigate how flexible and improvisational behaviour evolved. Then we might be able to see how crows’ ability to plan for the future fits in with their broader cognitive powers.

Humans aren’t as unique as we used to think. Not, at least when it comes to making plans for the future. Scientists originally thought humans were the only animals that made plans but, over the past decade, studies on non-human primates and the crow family have challenged this perspective.

For example, we’ve seen that these animals are able to store tools for later use, cache food in places where it will be needed the most, and hide pieces of the sort of food they know will be running low in the future.

In all these studies, the animals had to consider what to do, where to do it and when to prepare for certain specific future events. The latest research shows that ravens can indeed anticipate the “what, where and when” of a future event on the basis of previous experiences. But unlike the previous studies, this work tested the birds in behaviour they don’t normally show in the wild. This provides evidence that they have a much more general ability to plan for the future than previously thought.

Food hoarding is common in members of the crow family (corvids) because they often eat from perishable animal carcasses, which provide lots of food but are only available for a short amount of time. To create a suitable cache of food they need to work out what to store, where to put it and when to do so.

The new study, published in the journal Science, tested the birds outside this naturally occurring behaviour, which may have evolved specifically because it gives crows a survival advantage. Some crow species are known to naturally use tools to retrieve food. So the researchers tested whether the birds could store and retrieve a tool so they could get at their food after a gap of 17 hours – something we wouldn’t expect them to do naturally. The scientists didn’t give the birds a chance to learn this behaviour first but they were still able to instantly select the tool out of a number of unnecessary items.

In another experiment, the researchers taught ravens to select a token from a number of items that they could then exchange for food. Again, the birds then showed that they could plan for the future using this new behaviour. They were able to store this token and then retrieve and use it when they were offered the chance to exchange it for food 17 hours later.

This contrasts with all of the previous studies in future planning, which have focused on naturally occurring behaviour. For example, we know that California scrub jays cache their food according to their future needs. And that bonobos, chimpanzees and orangutans select, transport and save appropriate tools for future needs.

General intelligence

These studies have shown that animals can plan for the future – but they left an important question open for debate. Are animals only able to plan to use abilities that have evolved to give them a specific advantage, or can they flexibly and intelligently apply planning behaviour across various actions? Most critics would say the former, as the animals were tested in naturally occurring behaviours.

But the new research provides the first compelling evidence that animal species can plan for the future using behaviour that doesn’t typically occur in nature. This supports the view that at least some cognitive abilities in animals don’t evolve just in response to specific problems. Instead, it suggests that animals can apply these behaviours flexibly across problems in a similar way to humans.

It seems that, in corvids and apes, intelligence is not a system to solve a predefined set of problems (dedicated intelligence) but rather a computational system to improvise new solutions (improvisational intelligence). But it is still unclear what this cognitive system exactly is and how it evolved.

What’s needed now is neuro-biological evidence of general intelligence in animals. We also need to investigate how flexible and improvisational behaviour evolved. Then we might be able to see how crows’ ability to plan for the future fits in with their broader cognitive powers.

Lost in translation: To the untrained zebra finch ear, jazzy courtship songs fall flat

(Physorg 10 July 2017)

Zebra finches brought up without their fathers don’t react to the singing of potential suitors in the same way that female birds usually do, hinting that the environment in which the birds are raised can have a determining effect on their behaviour.

The finding, published in the Proceedings of the Royal Society B by McGill researchers, highlights how learning and experience, including developmental auditory experience, can shape how the brain perceives vocal signals.

The research adds to a growing body of evidence underscoring how specific experiences are necessary to shape the developing brain, and how the absence of specific inputs can have long-lasting effects on perception, neural processing, and behaviour.

Songbirds use courtship signals such as song to identify individuals and select a mate.

Zebra finch males each produce a single song, but they perform a “better” version when courting a female. There is accumulating evidence that females choose mates based on how well their potential suitor performs this “improved version”, providing information about his quality, condition and fitness.

Given the importance of being able to judge the subtle difference in the male zebra finches’ song, scientists imagined this skill to be innate within female zebra finches. To test that idea,

Sarah Woolley, professor at McGill’s Department of biology, and graduate student Nancy Chen decided to investigate how developmental exposure to adult male song might affect behavioural responses to song in female zebra finches.

“Because females use song in selecting a mate, we expected that females might have an inherent bias to recognize and prefer high-performance songs”, professor Woolley says.

Surprisingly, they found that a bird’s capacity to distinguish courting versus non-courting singing greatly depends on its upbringing.

Female zebra finches brought up with both of their parents reacted in the “normal” way and preferred the courtship songs of potential suitors. Females reared without their father’s songs didn’t consistently prefer high-performance courtship songs.

In other words, female zebra finches need to hear dad’s singing to help her distinguish which suitor sings best.

“In the wild, females would rarely be raised without a father/tutor,” professor Woolley notes. “That said, it could mean that the environment that birds are raised in will influence song preferences. We already know that male birds can shift their songs to make them easier to hear in noisy, urban environments. Our data could mean that the ability of females to detect those songs may be affected by what they hear when they are young.”